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ABSTRACT
Popular mobile devices are now being equipped with voice assis-
tants such as Siri and Google Now to provide new ways to interact
with devices using voice. However, due to the open nature of voice
channels, adversaries could easily record people’s use of voice com-
mands, and replay them to spoof voice assistants. To defend against
such spoofing attacks, we present a lightweight and efficient voice
liveness detection system called Void (Voice liveness detection): it
exploits different characteristics between human voices and voices
replayed through speakers with respect to spectral power patterns
analyzed over an audible frequency range to effectively detect voice
spoofing attacks. To evaluate the performance of Void, we per-
formed experiments on the two datasets: (1) 229,991 voice samples
collected from 120 participants with 15 speakers and (2) 18,016
voice samples in the “ASVspoof 2017” dataset with 42 participants
and 26 speakers. For both datasets, Void is capable of achieving
accuracy of over 99% and 98% in detecting voice replay attacks with
less than 1% and 5.1% equal error rate (EER), respectively. More-
over, we demonstrate that Void is resilient against various forms
of adversarial attacks with hidden voice commands and inaudible
voice commands – Void achieves 96% and 93% accuracy in detecting
even hidden voice command and inaudible voice command attacks,
respectively.

CCS CONCEPTS
• Security and privacy → Domain-specific security and pri-
vacy architectures; Usability in security and privacy;
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1 INTRODUCTION
Voice assistants are becoming ever more powerful and capable of
processing advanced commands. Popular services like Siri (Apple),
Alexa (Amazon), Now (Google), Cortana (Microsoft), and Bixby
(Samsung) allow people to shop online, place phone calls, send in-
stant messages, schedule appointments, check emails, create to-do
lists, control smart home appliances, access banking services, and
so on. Such security-critical commands need to be protected with
authentication schemes. Google’s “Trusted Voice” [1], Lenovo’s
voice-based unlock feature [2], and Tencent’s “Voiceprint” feature
available in WeChat [3] use voice biometrics to identify and authen-
ticate users. With recent advances in multi-factor authentication,
voice biometrics are also used together with secret “wake up” words
(voice passwords) to strengthen authentication security.

However, recent studies [8, 9, 23] demonstrated that voice-as-
biometric authentication systems are insecure and prone to various
forms of voice presentation attacks including replay attack, voice
synthesize attack, and voice morphing attack. Among those attacks,

the most serious security threat is to use pre-recorded voice sam-
ples (intentionally) collected from genuine users to deceive a voice
assistant into processing voice commands that appear to be coming
from genuine users. This attack is often referred to as a “replay at-
tack,” where an adversary tries to spoof speech recognition systems
by playing pre-recorded voice samples. Recently, there was an acci-
dent in which a TV news report in San Diego about the child that
accidentally ordered a dollhouse via Amazon’s Alexa inadvertently
set off some viewers’ Echo devices, which in turn tried to order
dollhouses using Alexa [10]. This happening shows a potential
risk of replay attacks. Therefore, many tech giants such as Google
and Apple have already taken those vulnerabilities seriously, and
warned their users about its risks in some cases1.

To distinguish between legitimate voice samples from a genuine
user and the replayed ones, several voice liveness detection tech-
niques (e.g., using an additional accessory device [8]) have been
suggested. Although their approach achieved around 97% accuracy,
such techniques rely on users carrying a specific hardware device.
To improve the detection accuracy without any extra hardware
support, deep learning-based approaches [7, 28] were also intro-
duced. The best known solution seems highly effective in terms
of detection accuracy (with 6.73% equal error rates (EER)) but is
computationally too expensive to deploy; four machine learning
models including three deep learning models (two CNNs and one
RNN) and one SVM model were required.

To reduce such computational burden and achieve high accuracy
in detecting voice replay attacks, we present Void (Voice liveness
detection), an efficient voice liveness detection system based on the
“cumulative power of each frequency” in spectrograms.

Void was designed based on two essential characteristics that dif-
ferentiate human voices from machine-generated sounds including
replayed human voices: (1) Most loudspeakers aim to play sound
over given reproducible frequency ranges accurately, and inherently
adds additive noises at various frequencies to achieve that. Conse-
quently, the overall power over the audible frequency range is scat-
tered with some uniformity. (2) With human voice, power in lower
frequencies is relatively higher than that in higher frequencies
[11, 27]. Due to those two characteristics, we found that there are
significant differences between human voices and replayed voices
in cumulative power distribution over signal frequencies – our ap-
proach exploits such differences to detect replayed voices. Our ex-
periment results, conducted on voice samples collected from 120 par-
ticipants under various conditions (e.g., with/without background
noise) and a large-scale dataset of voice samples (the “ASVspoof
2017” dataset [27]), demonstrate the feasibility of Void with various
loudspeakers and environmental conditions. Our key contributions
are summarized as follows:

1While enabling the Trusted Voice feature on Nexus devices, Google explicitly warns
that it is insecure than password and can be exploited by the attacker with a very
similar voice.
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• We propose a spectral power-based voice presentation at-
tack detection system that does not require any additional
hardware, and solely uses frequency and cumulative power
distributions to generate key features that differentiate hu-
man and machine – resulting in a solution that does not
require heavy and complex computations, and performs
decisions in real-time with minimal delays (see Section 5).

• We evaluate Void on two different datasets – with varying
demographics, distances, speakers, and background noises
– to show that it can overall achieve over 99% of accuracy
for varying distances and speaker genders. Void is particu-
larly capable of achieving accuracy of over 99% (with less
than 1% EER) to classify 229,991 voice samples with 120
participants, 14 different built-in speakers and 4 different
high-quality standalone speakers, and over 98% (with 5.1%
EER) to classify 18,016 voice samples (in the “ASVspoof
2017” dataset [27]) with 42 participants, 8 different built-in
speakers and 18 different high-quality standalone speakers,
respectively (see Section 7.2 and 7.3).

• We show that Void is also resilient to hidden and inaudible
voice command attacks [16–18, 24, 25] that exploit sound
samples that are difficult to understand (by human listen-
ers) but are still recognized as valid voice commands. We
show that Void achieves an accuracy of 96% in detecting
hidden voice commands, and an accuracy of 93.3% in de-
tecting inaudible voice commands (see Section 7.4).

• We show that Void can be implemented efficiently. Com-
pared with the existing machine learning based approaches
(e.g., CQCC in 2017 ASVspoof challenge [7]), Void is signif-
icantly efficient and lightweight. In our prototype imple-
mentation, the number of features used in Void is 167 while
the number of features used in CQCC is 25,560. Moreover,
Void can detect replay attacks with only 3.5 seconds for
training time and 0.18 seconds for testing time (on average)
while CQCC takes 929.97 seconds for training time and
0.63 seconds for testing time (see Section 7.2).

2 THREAT MODEL
Voice authentication is the process of verifying a user’s identity by
extracting acoustic features that are related to the user’s behavioral
and physiological characteristics.

There exist various voice impersonation attack methods to gen-
erate voice samples that resemble a victim’s voice. However, we
specifically target two types of machine-based voice impersonation
attacks: (1) voice replay attacks [5, 8, 9] and (2) hidden [24, 25] and
inaudiable voice attacks [16–18].

2.1 Voice replay attacks
An attacker uses a recording device in a close proximity to a victim,
and records the victim’s utterances (spoken words) used to interact
with voice assistants [5, 8, 9]. To replay the recorded voice com-
mands, the attacker can use either built-in, low-quality speakers on
her phone or external, high-quality speakers (e.g., Bose speaker).

Voice replay attack is the most accessible (easiest) attack to per-
form, but it is also the most difficult attack to detect due to the

similarities between a victim’s real voice and recorded (and re-
played) voice.

2.2 Hidden and inaudible voice command
attacks

We also consider more sophisticated attacks (called hidden and
inaudible voice command attacks) [16–18, 24, 25] that were recently
developed to secretly deliver voice commands to a victim’s voice
assistant.

An adversary equipped with a sophisticated playback device
can generate sound samples that are unintelligible or inaudible to
human listeners but can be interpreted as valid commands by the
target voice assistant. Consequently, those hidden and inaudible
commands are executed by the voice assistant without the device
owner’s awareness. Those hidden and inaudible voice commands
could be created using sophisticated machine learning techniques
through either black-box model or white box model [25]. Inaudi-
ble voice commands can be particularly generated by exploiting
hardware non-linearity with a ultrasonic speaker and could affect
the performance of Void. Recent studies [16–18] have successfully
demonstrated the feasibility of such attacks.

Therefore, we evaluate the performance of Void against those
two types of voice command attacks, hidden [24, 25] and inaudiable
voice command attacks [16–18], respectively.

3 REQUIREMENTS
3.1 Latency and resource usage requirements
Existing commercialized voice assistants (e.g., Siri and Google Now)
utilize server-based speech and voice recognition technologies, and
make intensive use of computational resources including CPU, GPU,
memory, and data storage. Our conversations with several engi-
neers at a large IT company (that runs their own voice assistant
service) revealed that there are latency and computational power
usage requirements that must be considered upon deploying any
kind of machine learning-based services. This is because additional
use of computational power and memory through continuous in-
vocation of machine learning algorithms may incur unacceptable
costs for businesses, and unwanted latency for processing voice
commands. A single GPU may be expected to concurrently process
100 or more voice sessions (streaming commands), indicating that
machine learning algorithms must be lightweight, simple, and fast.

Hence, businesses are very strict about adding and continuously
running new data-driven algorithms on their already exploding
GPUs and CPUs. If deployment of new data-driven analytic services
are necessary, businesses expect algorithms to be optimized through
the use of computationally efficient algorithms, minimal number
of features, and minimal number of machine learning algorithms.

3.2 Detection accuracy requirements
Our main objective is to achieve higher accuracy while keeping the
latency and resource usage requirements at modest level. Therefore,
our goal is to opt for a computationally efficient machine learning
solution which could be practically deployed and achieves higher
accuracy. The primary security goal of Void is to achieve an EER
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Figure 1: Spectrogram of an example phrase “The Blue La-
goon is a 1980 romance and adventure film.” uttered by a
live user (left) and cumulative power spectral decay of the
corresponding command (right).

Figure 2: Spectrogram of the same example phrase (as in
Figure 1) replayed using iPhone 6S plus (left) and cumula-
tive power spectral decay of the corresponding command
(right).

that is similar to or lower than the EER (6.73%) of the best perform-
ing algorithm [28] from the 2017 ASVspoof challenge. Considering
that their deep learning algorithm used a combination of multiple
(heavy) classification techniques2, achieving 10% (or lower) EER
with the use of more computationally lightweight and fast algo-
rithms would be a practical and scalable solution for businesses to
consider.

4 DIFFERENCES IN VOICE
CHARACTERISTICS

In this section, we discuss frequency-specific spectral power char-
acteristics between human voices and voices replayed through
loudspeakers.

4.1 Characteristics of human voice
Human voice frequency is a part of human sound production pro-
cess, in which vocal cords are the primary sound source. The mecha-
nism for generating human voice consists of three main parts: lungs,
vocal folds within larynx (also called voice box), and articulators.

Human male voice covers a frequency range of 80Hz to 8kHz,
and female voice covers between 350Hz to 17kHz [13]. According
to the Nyquist-Shannon sampling theorem, the sampling frequency
fs must be at least twice the highest component of voice frequency
for effective reconstruction of voice signals. Thus, fs needs to be at
least 34kHz to cover both adult male and female voices. Also, the
fundamental frequency of a typical adult male’s voice ranges from
85 to 180Hz, and that of a typical adult female’s voice ranges from
165 to 255Hz [20, 21]. Thus, the fundamental frequency of most
speeches fall below the bottom of the “voice frequency” range.

The voice signals received by a device also contains certain
additive noises and microphones’ non-linear behaviors3, therefore,
we expect that spectrograms of the received audio signals will

2Top performing approaches in the 2017 ASVspoof challenge employ multiple sub-
systems and classifiers with computationally intensive features. These approaches
use multiple classifiers with a large number of features extracted from MFCC, IMFCC,
CQCC PLPCC, etc. At the decision making step, output scores from all classifiers are
fused using the Bosaris toolkit [14].
3Due to the inherent non-linear characteristic of microphones, they produce additional
signals in lower frequency ranges [15, 16].

show extra frequency components. As a result, the accumulated
power over certain frequencies would increase due to additive noise
signals. Figure 1 (left) shows the spectrogram of a voice command
“The Blue Lagoon is a 1980 romance and adventure film” uttered
live by human, and processed by an audio chipset in a laptop. The
sampling frequency fs for the phrase utterance was set to 44.1kHz,
and the utterance duration was 5 seconds. It is clear that most of
the spectral power lies in the frequency range between 20Hz and
1kHz. The cumulative spectral power contributed by each frequency
is also shown in Figure 1 (right). There is an exponential power
decay of human voice at frequency around 1kHz. Void utilizes such
characteristics to classify human voices.

4.2 Characteristics of loudspeakers
To perform a voice replay attack, an adversary is required to con-
vert digital voice signals into audible sounds using a conventional
loudspeaker. Loudspeakers’ manufacturers often use the term fre-
quency response to describe the frequency range that a loudspeaker
can reproduce. The frequency response of a loudspeaker depicts
how strong a loudspeaker can reproduce sound across audible fre-
quency range4. The frequency response curve is usually displayed
higher for frequencies played with high volume, and displayed
lower for frequencies played with lower volume [19]. Typically,
the frequency response for a loudspeaker varies from 3 to 30dB,
dropping off drastically at very low bass and very high frequencies.
Generally, a flat frequency response indicates that a loudspeaker is
able to reproduce sounds accurately5. However, it is not practically
possible due to imperfections in speaker manufacturing processes
and non-linear characteristics in electronic components such as
microphones, amplifiers, and loudspeakers [12, 19].

Figure 2 shows spectrogram and the corresponding cumulative
spectral power of a voice phrase played back through an iPhone
6S Plus. Note that the spectrogram shows some uniformity in the

4The theoretical range of human hearing is generally from 20Hz (low bass tone) to
20kHz (highest treble notes). Thus, a loudspeaker should be sensitive to voices in that
frequency range.
5For an ideal speaker, the perfect frequency response plot would look like a flat line
across the entire audible frequency range.
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power distribution between 1 and 5kHz. We observe that the cu-
mulative spectral power (see Figure 2 (right)) does not show an
exponential decay; instead, it shows more like a linear decay be-
tween 1 and 5kHz.

4.3 Key insights
We observe that human voices and voices replayed through loud-
speakers show uniquely different patterns of power decay. Based
on our observations, we present the following two key insights:
(1) With human voices, we observe that most of the signal’s power

is concentrated in lower frequencies, specifically below 1kHz.
This observation is aligned with the findings from [11], which
states that power in lower frequencies is greater than that of
higher frequencies. However, in the replayed version of the
same voice phrase using portable devices with built-in speak-
ers, the power is spread out over the range of frequencies be-
tween 20Hz and 10kHz (see Figure 2). Portable devices with
built-in speakers show almost similar behavior in their spectral
power distribution, i.e., power decay rate is not exponential,
but gradually decreases over frequencies. The possible expla-
nation for such power spread over the wide range of audible
frequencies could be due to low-quality hardware boosting
certain frequencies, such as frequency response phenomena
of loudspeakers or hardware non-linearity. We found similar
power decay patterns in 14 portable devices (10 smartphones
and 4 laptops) with built-in speakers. Therefore, one key insight
is in detecting replay attacks launched from portable devices
is by detecting linear decay in spectral power over the range
of frequencies (see Appendix A). The distinguishing character-
istics of power decay pattern in replay attacks from built-in
speakers and live-human enable us to detect attacks launched
using built-in speakers. Because most of the power is concen-
trated in lower frequencies (exponential power decay) in the
case of live-human voices whereas the power decay showsmore
of a linear trend in the case of replayed attacks from built-in
speakers. Thus, by analyzing power patterns over audible fre-
quency range, replay attacks launched using built-in speakers
of smartphones, tablets, laptops could be detected with high
accuracy.

(2) We also observe that the power decay patterns of high-quality
standalone speakers are not similar to those of built-in speakers
on portable devices. In practice, voice commands replayed using
a Bose speaker [22] are rather similar to those in live-human
voices; i.e., most signal power is concentrated at frequencies
below 1kHz, thus making it difficult to detect such high quality
loudspeakers. However, in the case of live-human voices, the
sound signals directly go into the receiver’s microphone with
less degradation in sound quality. However, in the case of re-
played voice samples from high quality standalone speakers,
the quality of received voice samples are generally more de-
graded than live-human case due to additive noise signals and
hardware non-linearity. In other words, power patterns in the
replay attacks from high quality standalone speakers are quite
non-deterministic compared with those in live-human voices.
In order to verify the validity of our key insights, we analyzed

the cumulative spectral power behaviours over different recording

and playback devices and confirmed that our key insights still
remained valid under various experiment conditions. For recording
human voices, we used three different laptops with a sound card
manufactured from different vendors.
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Figure 3: Diversity in high-quality recording and playback
devices. Live-human: Two Samsung and one MacBook Pro
laptops are used to record live-human voices (left). Replay
attack: Three smartphones (Samsung Galaxy A5, Samsung
Galaxy S8 and iPhone 6S Plus) are used to record live-human
voices and replay the recorded voices (right).
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Figure 4: Signal power frequency range between 20Hz and
5kHz. Live-human (top three): fine-grained power fluctua-
tions can be observed over the frequency range from 20Hz
to 2kHz. High-quality standalone speakers (bottom three):
the power over the same frequency range is more concen-
trated with less fluctuations in power.

The log-scaled power behaviors over frequencies are presented
in Figure 3 (left). There exist locally slight differences between
the three laptops, but their overall patterns remains similar, i.e.,
the exponential decay of power in the lower frequencies could be
observed clearly. We can see that the slope of decay rate in spectral
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Figure 5: High-level design of Void, consisting of spectral power analysis over audible frequency range.

power is greatly changed at around 1kHz (see the left side of the
red-dotted line in Figure 3 (left)). The key point here is to observe
that live-human voices recorded at laptops’ microphones show
an exponential decay in spectral power at around 1kHz. It seems
natural because human voice frequencies mostly fall in the lower
frequencies [13].

Figure 3 (right) shows the spectral power behaviors of voice
samples playbacked from three different smartphones (Samsung
Galaxy A5 2015, Samsung Galaxy S8 2016, and iPhone 6S Plus).
Unlike live-human voices (Figure 3 (left)), certain frequencies above
4kHz are showing significant variations in power. We can also
see that the power decay in lower frequencies does not show a
exponential power decay pattern, but is more like linear between
20Hz to 4kHz.

Figure 4 shows normalized signal power for live-human voices
and voices replayed through three different high-quality standalone
speakers, respectively. We can observe that most of the power is
concentrated in the lower frequencies for both live-human voices
and voices replayed. However, we can also see that the power
patterns of live-human voices are quite different from those of the
voices replayed at higher frequencies (see red-dashed rectangles in
Figure 4). These differences in power patterns could be exploited
to effectively detect replay attacks from high-quality standalone
speakers.

5 SYSTEM DESIGN
Void is designed to satisfy the requirements specified in Section 3
based on two key ideas (see the details in Section 4.3): (1) examining
signal power distributions over the audible frequency range, and
computing the linearity degree of signal power in order to detect
voices replayed through low-quality loudspeakers, and (2) analyzing
low-power and high-power frequencies to effectively detect voices
replayed through high-quality loudspeakers.

Void consists of three stages as illustrated in Figure 5: signal
transformation stage (see Section 5.1), feature extraction stage (see
Section 5.2), and decision making stage (see Section 5.3). The overall
procedure of Void is described in Algorithm 1. The voice command
Voice in, window size W and a weighting factor ω are given as
the input to Algorithm 1. In this algorithm, we use the following
notations. Spow represents the cumulative spectral power density
per frequency of Voice in (see an example of Spow in Figure 3).

W represents the size of a single segment of Spow to properly
capture the dynamic characteristics of Spow with a small number
of segments. A weighting factor ω between 0 and 1 is used to
calculate a threshold for feature values at higher frequencies. Those
parameter values were determined experimentally with a large
number of test samples. Last, pow(i) in Algorithm 1 represents the
accumulated power in ith segment of Spow . We consider only voice
signals below 15kHz because most of the signal power for voice
commands lies with in 15kHz range.

Algorithm 1 Void’s overall procedure.
Input: Voice in,W and ω
Output: live-human or replayed
Stage 1: Signal transformation

1: Compute STFT of for input voice command Voice in
2: Compute Spow from STFT

Stage 2: Feature extraction
3: Divide Spow into k segments where k = ⌊

size(Spow )

W ⌋.
4: for ith segment Seдi from i = 1 to k do
5: pow(i) = the sum of power in Seдi .
6: < pow > = Vectorize(pow(1), · · · ,pow(k))
7: FVLPF = < pow >
8: FVLDF = LinearityDegreeFeatures(< pow >)
9: FVHPF = HighPowerFrequencyFeatures(< pow >, ω)
10: Compute LPC coefficients of Voice in and store the results as

FVLPC
Stage 3: Decision making

11: FVVoid = {FVLPF , FVLDF , FVHPF , and FVLPC }
12: Run SVM classifier with FVVoid and provide the class label

(either live-human or replayed) as output

5.1 Signal transformation
Our system mainly relies on the spectral power analysis of audio
signals. In the signal transformation stage, given an input voice
command signal Voice in, the short-time Fourier transform (STFT)
is applied to obtain the cumulative spectral power density per
frequency ofVoice in over time6. The power in each frequency band
is summed over time (see the Step 1-2 in Algorithm 1). Thus signals
6The terms ‘cumulative spectral power’ and ‘power’ are used hereafter interchangeably.
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are transformed into two dimensions containing frequency and
corresponding power. The obtained signal spectrogram contains
frequencies and the corresponding power (dB) over time (see Figure
1 and 2).

5.2 Feature extraction
The vector Spow computed from the first stage are used as the input
to the second stage to extract features for classification.

For feature extraction, Void sequentially computes the following
four classes of features: lower power frequencies features (FVLPF ),
signal power linearity degree features (FVLDF ), higher power fre-
quencies features (FVHPF ), and audio signal’s linear prediction
cepstrum (LPC) coefficients features (FVLPC )7. The first three fea-
ture classes are computed from Spow while FVLPC is computed
directly from the raw voice command signal Voice in.

5.2.1 Lower power frequencies features: In the second stage of
Algorithm 1, we first divide the signal Spow into k short segments
of equal-length according to the given window sizeW (see the step
3 in Algorithm 1). If the size of Spow is not divisible byW , we just
omit the last segment. Next, we compute the sum of power in each
segment Seдi for i = 1 to k (see the step 4 and 5 in Algorithm 1).
We then vectorize the first k segments of power density values as
< pow > (see the step 4 in Algorithm 1). The vector < pow > is
directly used for FVLPF (see the step 5 in Algorithm 1). At this step,
we obtained the cumulative spectral power density values for all k
segments. Note that power density values for each segment are in
order of increasing frequency, starting from the lowest frequency
of a voice sample. However, we are only interested to retain power
density values only within 5kHz because we experimentally ob-
served that there is a clear difference between live-human voices
and replayed voices in the power pattern in lower frequencies below
5kHz.

5.2.2 Signal power linearity degree features: Given the vector
< pow > of k segments’ power density values, we compute the
signal’s feature vector (FVLDF ) to measure the degree of linearity
of spectral power that can be particularly helpful to detect voices
replayed from portable devices with built-in speakers showing high
linearity of spectral power over the audible frequency range (see
Appendix A).

Algorithm 2 LinearityDegreeFeatures
Input: < pow >
Output: FVLDF ={ρ, q}.

1: Normalize < pow > with sum(< pow >) to obtain
< pow >normal

2: Accumulate the values of < pow >normal to obtain powcdf
3: Compute the auto-correlation coefficients of powcdf and store

the results as ρ
4: Compute the quadratic coefficients of powcdf and store the

results as q

Algorithm 2 describes the procedure for computing the linearity
degree of < pow >. Initially, < pow > is normalized by dividing

7FV stands for feature vector.

each value in < pow > by the total signal power (sum(< pow >))
(see the step 1 in Algorithm 2). The normalized power signal vector
< pow >normal is then used to compute the cumulative distribution
of spectral power, denoted bypowcdf (see the step 2 of the Algorithm
2). In this step, < pow >normal is accumulated in a step-wise fashion.

For the linearity degree of powcdf, we compute the following
two features (see the step 3 and 4 in Algorithm 2): auto-correlation
coefficients ρ and quadratic curve fitting coefficients q of powcdf.
Auto-correlation of a cumulative distribution can be used to quan-
tify the linearity of the cumulative distribution. However, we found
that ρ is not highly sensitive in identifying the distinguishable ex-
ponential growth of power in live-human voices at frequencies
between 20Hz and 1kHz (see Appendix A). Therefore, we introduce
the quadratic curve fitting coefficients q of signal powcdf as another
metric to quantify the degree of linearity for the cumulative dis-
tribution function. Finally, all the computed coefficients {ρ,q} are
stored as FVLDF .

5.2.3 Higher power frequencies features: Given the vector <
pow > of k segments’ power density values and the peak selection
threshold ω, we compute the feature vector (FVHPF ) to capture the
dynamic characteristics of spectral power in higher frequencies.

As discussed in Section 4.3, live-human voices and voices re-
played through high-quality standalone speakers show quite simi-
lar patterns in the overall distribution of spectral power. Therefore,
the only features for measuring the degree of linearity in the cu-
mulative distribution function of power may not be sufficient to
distinguish live-human voices from voices replayed through high-
quality standalone speakers with high accuracy.
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Figure 6: Distribution of normalized spectral power over fre-
quencies where the total frequencies in audio signal are up
to 8kHz andW = 10.

Figure 6 shows that there is no clear distinguishable pattern be-
tween live-human voices and voices replayed through loudspeakers
(Bose and Yamaha) in lower frequencies above 1kHz. That is, the
spectral power of those signals is mainly concentrated at frequen-
cies below 1kHz. Therefore, we also need to focus on the features to

6



Anonymous submission #9999 to ACM CCS 2018

reflect their relative differences in higher frequencies below 1kHz.
Interestingly, in the case of voices replayed using loudspeakers,
there is only one single peak in the frequency range below 1kHz
while there is more than one peak for live-human voices (see Figure
6). Therefore, the number of peaks in the frequency range below
1kHz can also be used as an important feature for classification.
Please refer to Section 4.3 where we have discussed the reason
power peaks in spectral power density.

Algorithm 3 HighPowerFrequencyFeatures
Input: < pow > and ω
Output: FVHPF = {Npeak , µpeaks , σpeaks }.

1: Find peaks from < pow > and store the discovered peaks
{(peak1, loc1), · · · , (peakn , locn )} as Speak ▷ n is the number
of peaks discovered in < pow >

2: Tpeak = ω ·max(peak1, · · · ,peakn )
3: for each peaki in Speak from i = 1 to n do
4: if peaki < Tpeak then remove peaki from Speak

5: Npeak = the number of peaks in Speak ;
6: µpeak = the mean of the locations of peaks in Speak
7: σpeak = the standard deviation of the locations of peaks in

Speak

Algorithm 3 describes the procedure for computing signal’s
higher power frequency features (FVHPF ). In < pow >, we first
identify peaks and their locations (see the step 1 in Algorithm 3).
Our peak selection criterion Tpeak has a nice property that it auto-
matically scales itself with respect to audio signal’s spectral power
density values. For example, for low/high powered voice signal,
the Tpeak is computed accordingly, as shown in the step 2 of Algo-
rithm 3. From our experiments on both the datasets, we observe
that detected peaks from live-human voice samples and replayed
samples show different characteristics when we set ω = 0.6. How-
ever, ω needs to be set such that high power frequency feature set
play its role in detecting voice replay attacks. We set a threshold to
filter out insignificant peaks by multiplyingmax(Speak ) by a given
weighting factor ω where 0 ≤ ω ≤ 1 (see the step 2, 3 and 4 in
Algorithm 3).

For FVHPF , we first count the number of peaks in Speak and
store the count of peaks as Npeak (see the step 5 in Algorithm 3);
the mean and standard deviation of locations of the discovered
peaks are sequentially computed and stored them as µpeaks and
σpeaks , respectively (see the step 6 and 7 in Algorithm 3).

5.2.4 Linear prediction cepstrum coefficients: Linear predictive
coding based approaches are most widely used in speaker recog-
nition and verification, speech coding, speech synthesis, speech
recognition, and etc. In particular, LPC coefficients are often used
to detect voice replay attacks [7].

The basic idea behind LPC is that the current speech sample can
be approximated as a linear combination of previous samples. The
predictor coefficients for a voice sample is computed by minimizing
the sum of squared differences between the actual speech samples
and linearly predicted ones. We use the auto-correlation method
with Levinson-Durbin algorithm [26] to compute the LPCC feature
vector FVLPC .

5.3 Decision making
In the third stage of Algorithm 1, we construct a classifier with
the feature sets computed in Section 5.2 to detect voices replayed
through loudspeakers. Instead of manually constructing rules for
a comprehensive logic of decision making, we opted to utilize a
machine learning-based classifier to develop Void in a systematic
fashion. The description of our machine learning model is as fol-
lows:

• Feature set:The four feature vectors FVLPF , FVLDF , FVHPF ,
and FVLPC are combined to constitute a feature set for ma-
chine learning algorithm. The total number of feature is
167 where the detailed summary of FVHPF and FVLDF
feature vectors is given in Appendix B.

• Classifier:We employed support vector machine (SVM) as
the classifier for two class (live-human and replayed). We
tested Void on various models including generative (Gauss-
ian mixture model) and discriminative (SVM and kNN)
models for evaluation . We believe that generative models
such as Gaussian mixture model is not suitable for Void
because they rely on generating feature sets values based
on the observed values. The generated features might not
accurately represent our feature sets. In our experiments,
we rely on SVM which is light-weight and quick in deci-
sion making, and therefore is a good choice for real time
applications. An SVM classifies dataset by finding the best
hyperplane that separates all feature points of one class
from those of the other class. Moreover, it is capable of
deducing linear relations between the the cross-correlation
values that define the feature vector.

6 DATASETS
This section describes human voice samples and replayed samples
we collected using multiple recording and playback devices, and
under varying conditions. We also explain a publicly available
database of replayed voice samples [7] that we used for evaluation.

6.1 Data collection and demographics
For voice sample data collection, we prepared 10,000 different real-
world voice commands that are actually understood by an existing
voice assistant implementation. The voice commands were mixed
in lengths (ranging between 2 to 5 seconds) and command types
(e.g., setting alarms, calling contacts, opening emails, etc.). We then
recruited participants from two different user pools.

For the first data collection, we recruited 100 participants from
a large IT company, asking each participant to say 100 different
voice commands from the prepared list. Two recording devices,
Samsung Galaxy S8 and Apple iPhone 8, were used to record all
voice and both devices being placed about 20 centimeters away from
each participant. About 53% of the participants were male, equally
covering voice frequency ranges from both males and females [13].
Most of the participants were in the 40-49 (13%), 30-39 (62%), and
20-29 (25%) age groups.

We explicitly informed the participants that the purpose of ex-
periments is to collect voice samples to develop and evaluate a voice
liveness detection solution. Ethical perspective of our research was
validated through an institutional review board (IRB) at a university.
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To generate replay attack dataset, we replayed all 10,000 collected
voice samples in an lab environment under various conditions as
described below:

• With or without background noise: We replayed all
voice samples during the daywhen there were people using
the office to record replay attacks with natural background
noise. We also replayed all voice samples late at night when
the office was not being used to record replay attacks with
minimal background noise – ambient environmental noises
such as central AC and computer CPU noises were still
present though.

• Distances between the target device and speech source:
Distances between the target device (used to record re-
played voice samples) and the speech source (replaying
device) could affect the detection accuracy – this is because
the proposed approach relies on spectral power features
and power patterns could be affected by varying distances.
Hence, we recorded replayed voice samples using three
identical devices, Samsung Galaxy S8, which were located
10 centimeters, 1 meter, and 2 meters away from each
speech source.

• Cross-dataset training:We trained and tested voice sam-
ples collected from one specific set of participants, target
(recording) devices, and speech sources (replaying devices)
using 10-fold cross validation for both our dataset and the
publicly available dataset.

• Speech source types:We also used 10 different types of
smartphone built-in speakers, and 4 different types of loud-
speakers as shown in Appendix C to replay recorded voice
samples (speech sources). Each loudspekaer was different
in terms of the number of sound channels supported, brand,
price (some were high-end speakers), and electrical power.

For the second data collection, we recruited 20 participants from
a university, and asked each participant to say 20 different com-
mands from the prepared command list. 14 participants were grad-
uate students, and their age ranged from 25 to 36. 16 participants
were male. We used a slightly different human voice record setting:
each participant was asked to say a command 1 meter away from
the recording devices (multiple laptops in this case), and repeat the
same command 3 meters away from the same recording devices. Re-
playing human voice samples and recording them were performed
as described above.

We merged the two datasets, and used the merged dataset for
our evaluations.

6.2 ASVspoof dataset
In addition, we also used an online replay attack database called the
“ASVspoof 2017 dataset” [7, 27]. It has been created to facilitate a
competition to detect genuine human voice samples from samples
reproduced using laptops and smartphones’ built-in speakers as
well as standalone speakers. It is a large database containing voice
samples collected from 179 replay attack sessions, played back with
125 unique replay configurations – such configurations vary in
recording, playback, and background environment settings. A ses-
sion consists of sets of voice samples that were recorded under the
same replay configuration. Moreover, voice samples were collected

from numerous environments, including a balcony, bedroom, can-
teen, home, office, and open lab space. The details of both dataset
are presented in Table 1 for comparison.

Table 1: Dataset description.

Item Detail Our dataset ASVspoof

Data
Samples 229,991 18,016
Training ratio 10-fold CV 10-fold CV
Participants 120 42

Devices Replay 14 26
Recording 15 25

Replay configurations 33 125

Speakers Built-in 10 8
Standalone 5 18

7 EVALUATION
This section presents our evaluation results, including the attack
detection accuracy and time taken to train models and classify
attacks.

7.1 Setup details
As for data collection, we followed the procedures and experimental
conditions described in Section 6, and used a sampling frequency
of 44.1kHz to record all human voice samples. All of the built-in
speakers and standalone speakers used for replaying recorded voice
samples are listed in Appendix C.

We used SVM as our classification algorithm as it is known for
its robust performance when a given dataset is large. SVM is also
light-weight, and fast in classifying input data, making it suitable
for real time applications like Void. We first performed 10-fold cross
validation on the collected datasets, and applied SVM with linear
kernel to train the classification models.

All experimented were conducted on a desktop PC equipped
with Intel(R) Core(TM)i5-6500 3.2 GHz CPU, and 16 GB of main
memory. 64-bit Windows 10 operating system was installed on it.
For computing EER, we used the Bosaris toolkit [14], which was
suggested in the ASVspoof Challenge [7].

We use four possible performance metrics as shown in Table
2. “True acceptance” (TA) and “true rejection” (TR) refer to cor-
rectly detecting live-human and loudspeaker, respectively. “False
acceptance” (FA) is when loudspeaker is classified as live-human,
and “false rejection” (FR) occurs when live-human is classified as
loudspeaker. To measure the performance, we rely on the standard
automatic speaker verification metrics, which are false acceptance
rate (FAR) and false rejection rate (FRR). A replay attack is a success
if Void classifies it as a live-human voice. We also present EERs,
which are values for which the proportion of FAR is equal to the
proportion of FRR. An authentication system with 100% accuracy
would have EER of zero.
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Table 2: Decision outputs.

Accept Reject

Live-human True Acceptance False Rejection
Replay attack False Acceptance True Rejection

7.2 Overall performance
We present the overall performance of Void in detecting voice
replay attacks based on the performance metrics described in Table
2. Figure 7 shows the performances of Void on both datasets (ours
and the ASVspoof dataset). From this figure, we can see that the
performances for classifying all built-in and standalone speaker
voice samples together: for our dataset, live-human voice detection
accuracy is 99.5%, and voice replay attack detection accuracy is
99.7%. As a result, the EER for our dataset is below 1% (see Figure 8).

As for the ASVspoof dataset, Void achieves 85.8% accuracy for
detecting live-human voices, and 98.1% accuracy for detecting re-
play attacks. The EER on the ASVspoof dataset is 5.1%, which is
larger than that of our own dataset but is still a competitively low
error rate. The reason for this performance degradation is due to
the fact that there is a much larger number of replay configurations
(125) in the ASVspoof dataset being tested (see Table 1).

7.2.1 Performance on our dataset. Figure 8 shows the Void per-
formance on our own dataset in two parts: one for built-in speakers
and another for standalone speakers. The FAR for detecting replay
attacks originating from built-in speakers and standalone speakers
are 0% and 0.5%, respectively. The FRR for built-in speakers and
standalone speakers are 0.5% and 0.2%, respectively. The EER for
built-in speakers and standalone speakers are 0% and 0.25%, respec-
tively. The EER for standalone speakers is still very low considering
the variances we introduced in the dataset (multiple recording and
replaying devices, varying distances, with and without background
noises and so on.). Since spectral power distribution of standalone
speakers is similar to that of live-human, linearity degree features
(FVLDF ) alone are not sufficient. The reason Void still achieves high
accuracy is due to the additionally used feature vectors (FVLPF ,
FVHPF , and FVLPC ).

7.2.2 Performance on ASVspoof dataset. Figure 9 shows the Void
performance for ASVspoof dataset in two parts. Even with the large
variations in replay configurations present in that dataset, Void still
performed well for built-in speakers, achieving 1.5% EER. The EER
for standalone speakers was 5.1% due to larger FAR and FRR results.

7.2.3 Time taken for training and attack detection. Table 3 sum-
marizes the time taken for training, feature extraction, and testing
(classifying) a single voice sample from the ASVspoof dataset. We
compare Void’s time measurements against a constant Q cepstral
coefficients (CQCC)-based approach, which is used as a baseline
approach in 2017 ASVspoof challenge [7]. Feature extraction time
(‘Extraction’ in Table 3) measures the time taken to extract all fea-
tures from a voice sample, and testing time measures the time taken
to finish classifying a given voice sample.

Table 3: Space used for training ASVspoof dataset [7], and
average training and testing time (Numbers in parentheses
indicate standard deviations).

Complexity Feature Void CQCC [7]

Time (sec.)
Extraction 274.16 (0.24) 577.94 (0.31)
Training 3.5 (0.013) 929.97 (0.34)
Testing 0.18 (0.025) 0.63 (0.026)

Space # Features 167 25,560
# Training data 3,008,672 139,121,550

Accuracy EER 5.1% 23.8%

Compared to CQCC, Void is significantly faster in all aspects.
Void also uses significantly less space with respect to feature vector
size and training data size. Those observations clealry indicate
that Void is a highly efficient and fast solution, making it more
competitive to be deployed on existing voice assistant servers.

7.3 Effects of variances
In this section, we analyze the effects of three key variances –
distances between target device and attack device, gender, and
cross data training – on the performance of Void. We trained the
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Void model with 16,000 voice samples from our dataset: 8,000 live-
human samples and 8,000 replayed samples. We randomly selected
8,000 replay attack samples from a total 219,872 attack samples.
All attack samples were replayed through the standalone speakers
listed in Appendix A.

Table 4: Performance of Void under diversity.

Diversity Dimension Samples Detection Accuracy

Distance
15cm 3,996 3,963 99.1%
130cm 3,995 3,979 99.5%
260cm 3,997 3,971 99.3%

Gender Male 7,995 7,945 99.3%
Female 7,996 7,959 99.5%

Cross data
Scenario 1 4,000 3,436 85.9%
Scenario 2 5,996 4,802 80.1%
Scenario 3 7,994 6,573 82.2%

7.3.1 Sound source distances. To analyze the effects of varying
distances between attacker’s devices and target device, voice sam-
ples were replayed using three different distances: 15cm, 130cm,
and 260cm. We replayed a total of 3,996 voice samples – each loud-
speaker was used to replay around 1,000 voice samples. Accuracy re-
sults are presented in Table 4. Regardless of varying distances, Void
achieved over 99% accuracy in detecting replay attacks – demon-
strating that distance variations do not really affect the performance
of Void. Note, we did not try distances that are too far away from
target devices (e.g., 10 meters) since attackers would then have to
use very loud volumes, which would be noticed by people nearby.

7.3.2 Gender. Since the fundamental frequency characteristics
of male and female voices are quite different (e.g., females have
typically higher fundamental frequencies than males) [20, 21], the
power distribution patterns may vary between males and females.
To analyze effects of changing gender, we randomly selected 7,995
and 7,996 replayed voice samples from 30 male and 30 female par-
ticipants, respectively. Then we measured Void’s performance on
each gender group. Again, the accuracy results shown in Table 4
indicate that gender variances did not really influence our detection
accuracy.

7.3.3 Cross data training. For cross data training, we trained
Void on one set of participants and playback devices, and evalu-
ated the performance of Void using another set of participants and
playback devices.

For the training dataset, we used voice samples replayed through
specifically the Bose speaker from 10 male participants. For testing,
we considered the following three scenarios: In scenario 1, we
launched replay attacks with samples collected from 10 female
participants whose voices were played back using a standalone
Logitech speaker. In scenario 2, we launched attacks with voice
samples collected from 20 female participants whose voices were
played back using two standalone speakers, VMODA and Logitech.
In scenario 3, we launched attacks with voice samples collected from
20 female and 10 male participants whose voices were played back

using three standalone speakers, Yamaha, VMODA, and Logitech.
Again, the performance of Void on those samples is presented in
Table 4. In all three scenarios, the detection accuracy decreased
substantially to about 80–86%. Similar to other machine learning
based approaches, the performance of Void could be significantly
downgraded when we use a training dataset consisting of small
number of loudspeakers. This limitation is discussed further in
Section 8.2.

7.4 Detecting hidden and inaudible voice
commands

We also experimented with hidden and inaudible voice command
attacks. This section presents the performance of Void against those
two attacks.

7.4.1 Performance against hidden voice commands. Hidden voice
commands refer to commands that can not be interpreted by human
ears but are understood and processed by target devices (see Section
2). Void should perform well against such hidden commands as it
relies on spectral power features that are difficult to manipulate.
Moreover, hidden voice commands add more frequencies to an
original voice sample during obfuscation, which would increase
the overall signal power linearity (see Section 5.2.2). We recorded
hidden voice command samples using the black-box attack methods
demonstrated in [25], and with 1,250 samples from our own dataset,
and 13,306 samples from the ASVspoof dataset (see Table 5).

Table 5: Performance of Void against adversarial voice at-
tacks.

Attacks Dataset Samples Accuracy (%)

Hidden Our dataset 1,250 99.6
ASVspoof 2017 13,306 96.05

Inaudible ultrasonic speaker 5,000 93.3
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Figure 10: Power spectrum and spectral features of voice
sampleArtificial intelligence is for real. for live-human (left)
and hidden voice sample (right) over the range of frequen-
cies.

Figure 10 compares signal power distributions for live-human
voice and hidden voice command crafted with a phrase “Artificial
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intelligence is for real.” The original command is shown on the
left, and the obfuscated hidden command is shown on the right.
This obfuscated command was replayed through a loudspeaker.
From the signal power distribution shown on the right, we can
clearly observe signal power linearity scores that indicate a replay
attack. Unlike the live-human case in which the power distribution
over the range of frequencies shows non-linear behavior (mostly
concentrated below 2 kHz), the linearity coefficients for the hidden
voice samples show linear behavior (i.e., ρ: 0.97 and q: 2.40). The
high power frequencies location is also different, which is another
clue for detecting a replay attack.

The hidden voice command attack detection accuracy measured
with our own dataset and ASVspoof dataset were 99.6% and 96.05%,
respectively (see Table 5).

7.4.2 Performance against inaudible voice commands. Inaudi-
ble voice command attack involves playing an ultrasound signal
with spectrum above 20kHz, which would then be inaudible to hu-
man ears. Inaudible voice commands are played through ultrasonic
speakers. Due to the non-linear behavior of hardware – micro-
phones in this case – the received voice signals are shifted to lower
frequencies (down-modulation) with much lower power. Figure
11 compares the signal power over the audible frequency range
for live-human (left) and inaudible voice sample (right) replayed
through Jameco Valuepro 40TR12B-R ultrasonic speakers, which
were also used in [16]. To evaluate the performance of Void against
inaudible voice attacks, we modulated voice commands on higher
frequencies; i.e., each command was modulated using amplitude
modulation (AM) between 23kHz and 34kHz with a 1kHz gap. Once
modulated, voice signals were transmitted using Jameco Valuepro
40TR12B-R Ultrasonic Sensor Set. We used 5,000 samples from the
ASVspoof dataset for evaluation.

From the two graphs, we can clearly see that due to the down-
modulation effects from the non-linearity characteristics of the
hardware (microphone) used, the sum of power in inaudible sample
signal is much lower than that of the live-human sample. Also, the
linearity in power distribution and the high power frequencies are
obvious indicators of a replay attack.

As summarized in Table 5, Void achieves 93.3% detection accu-
racy for inaudible voice attacks.

8 DISCUSSION
8.1 Effectiveness of Void
Our evaluation results show that Void can effectively detect voice
replay attacks (see Section 7.2). For two different datasets consist-
ing of 229,991 and 18,016 voice samples, Void achieved detection
accuracy of over 99% and 98% with less than 1% and 5.1% EER,
respectively. Void is also resilient against adversarial attacks with
hidden voice commands and inaudible voice commands, achieving
96% and 93% accuracy for the two types of attacks, respectively (see
Section 7.4).

Because Void exploits two different characteristics in spectral
power patterns of voice signals, which can vary significantly based
on the type of loudspeakers, the performance of Void can also
be affected by loudspeaker types. Overall, Void is more effective
in detecting replay attacks launched through built-in speakers in
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Figure 11: Power spectrum and spectral features of a voice
sample for live-human (left) and inaudible voice sample
(right) over the range of frequencies.

portable devices. For example, in the ASVspoof dataset, Void is
capable of achieving 1.5% EER for built-in speakers while the EER
for standalone speakers increases to 5.1% (see Section 7.2).

Under various controlled conditions about distance and speaker’s
gender, Void still produced reliable performance results. For ex-
ample, when a replay attack is launched with varying distances
between the victim device and the attack device, the overall dis-
tribution of spectral power over frequencies is not significantly
effected. Hence, Void achieved accuracy of more than 99% with
distance (see Section 7.3). This is because Void exploits the relative
changes of spectral power pattern rather than the absolute values of
power density. However, as we can see the experiments results for
cross data training, the performance of Void could be significantly
degraded when using a small training dataset. We surmise that
unexpected patterns of voice signals generated by various high-
quality standalone speakers lead to a reduction in the effectiveness
of Void.

Compared with the existing machine learning based approaches
(e.g., CQCC), Void is lightweight and very fast in detecting replay
attacks. In our implementation, the number of features used in
Void is 167 while the number of features used in CQCC is 25,560.
Moreover, Void took only 3.5 seconds for training time and 0.18
seconds for testing time (on average) while CQCC took 929.97
seconds for training time and 0.63 seconds for testing time (see
Section 7.2). Therefore, Void might be considered to be incorporated
into a voice assistant app in smartphones because of its relatively
lower computational overhead. In this case, we can significantly
reduce the workload on the server because the voice assistant app
can locally discard unwanted voice commands (e.g., suspicious
voice commands) before delivering them to the server.

8.2 Limitations of Void
Since Void is based on just spectral power analysis to detect replay
attacks and the liveness of genuine users, some intentional pertur-
bation in a particular frequency range may affect the performance
of Void. For instance, when a recorded command is played through
a built-in speaker in a portable device, and at the same time, a hu-
man attacker can also start uttering some random phrases or words.
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In this case, the characteristics of built-in speaker can be compen-
sated by the human attacker’s voice, which may affect the accuracy
of Void. Even though a replayed voice command includes a linear
power density pattern in the frequency range of 100Hz-8kHz, the
human attacker’s speech may generate a non-linear power density
value such that most power density lies in higher frequencies below
1kHz, which makes it more difficult to detect a difference between
the device owner’s live voices and replayed voices. To mitigate
such sophisticated voice replay attacks with a human attacker’s live-
voice speech, another defense mechanism (e.g., speaker-recognition
algorithm) can be additionally introduced. Note that developing
such a defense mechanism is beyond the scope of this paper.

Unsurprisingly, most machine learning based approaches includ-
ing Void cannot easily detect new and unexpected samples which
were not included in the training dataset. Therefore, the perfor-
mance of Void may be degraded in real environments exposed to
combinations of numerous types of recording and plackback de-
vices for voice replay attacks. To avoid the performance degradation
of Void, we will consider two strategies commonly applied in ma-
chine learning techniques: (1) We can increase the size of training
dataset. Surely, this idea is not new, but we claim that Void has
the advantage of learning new training samples compared with
the existing methods because the training cost of Void is much
lower than other classification methods. (2) The performance of
Void against new devices might be improved with deviation-based
outlier detection methods by building a model of live-human voice
samples and detecting deviations from the normal model in the
observed data. The key features used in Void can still be used to
develop effective deviation-based outlier detection methods.

9 RELATEDWORK
Recent studies have demonstrated that voice assistants on smart-
phones are insecure and prone to various forms of voice presenta-
tion attacks [6, 8, 9, 18, 23] – such attacks “present human charac-
teristics to the biometric capture subsystem in a fashion that could
interfere with the intended policy of the biometric system” [4]. In
practice, however, replay attack is the most serious security threat
to voice-as-biometric authentication systems because this attack
can simply be implemented by recording a victim’s voice command
and playing it later.

Most sophisticated attackswere also introduced to hide the attack
attempts themselves. Carlini et al. [24, 25] presented an attack called
hidden voice commands to generate mangled voice commands that
are unintelligible to human listeners but which are interpreted as
commands by devices. Zhang et al. [16] extended this attack to
make voice commands completely inaudible by modulating voice
commands on ultrasonic carriers (e.g., over 20 kHz) to achieve
inaudibility.

Inaudible voice attacks [16, 17] are improving over time as poten-
tial attack on voice assistants by exploiting loophole in hardware
non-linearity. To overcome the limitation of short distances (within
about 5ft) in previous studies [16, 17], Roy et al. [18] demonstrated
the feasibility of launching such attacks from longer distances (i.e.,
within 25ft range) by multiple ultrasonic speakers. They stripe
segments of the voice signal across multiple speakers placed in sep-
arated space. Moreover, they developed a defense system against to

detect inaudible voice command attacks by analyzing the properties
of inaudible voice samples.

There aremany different approaches to detectmachine-generated
voice attacks. Zhang et al. [5] proposed user’s articulatory gesture-
based liveness detection (looking at precise movement of articu-
lators like lips and tongue) but their approach is only applicable
to scenarios where a speaker’s mouth is physically near a smart-
phone’s microphone. Similarly, Chen et al. [9] leveraged magnetic
fields emitted from loudspeakers to detect replay attacks. Their ap-
proach, however, requires users to utter a passphrase while moving
smartphones through a predefined trajectory around sound sources.
Feng et al. [8] proposed a voice authentication system that uses a
wearable device, such as eyeglasses, earphones/buds, and necklaces
– collecting a user’s body surface vibrations, and matching it with
voice signals received by a voice assistant through a microphone.
Although their approach is capable of achieving around 97% accu-
racy, they rely on an additional hardware user always has to carry
on. Therefore, detecting replay attacks remain challenging without
any extra hardware support.

Recently, an extensive study (through the 2017 ASVspoof chal-
lenge [7]) analyzed the performance of machine learning-based
state-of-the-art methods for distinguishing human voice samples
from sound samples replayed through a loudspeaker. According to
their experimental results, the equal error rates (EER) of the meth-
ods were varied from 6.73% to 45.55%. The winning solution fused
four models including three deep learning models (two CNNs and
one RNN) and one SVM model [28]. However, combining multiple
models and/or using the deep learning approach generally requires
heavy computational resources.

This motivated us to develop a high-performance model without
requiring heavy computational resources. Void was designed with
a small number of key features to detect machine-generated voice
impersonation attack attempts.

10 CONCLUSION
Void analyzes the spectral power patterns of voice signals to accu-
rately detect voice replay attacks. Compared with existing methods
that make heavy use of data-driven techniques and classification
features, our solution runs on a lightweight and efficient classifica-
tion algorithm with a small number of features (167), and does not
require any additional hardware.

Our experiments, conducted on several (and diverse) voice datasets,
showed that Void can achieve detection accuracy of about 99% (with
less than 1% EER) for replay attacks launched through portable de-
vices with built-in speakers and high-quality standalone loudspeak-
ers. Moreover, Void is resilient to hidden [24, 25] and inaudiable
voice command attacks [16–18], respectively. Void achieves an ac-
curacy of 96% in detecting hidden voice commands, and an accuracy
of 93.3% in detecting inaudible voice commands.

As part of future work, we plan to deploy Void in a practical
real-world environment and further investigate the performance
of Void with a massive set of voice commands.
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A EXAMPLE OF CUMULATIVE
DISTRIBUTION OF SPECTRAL POWER
DENSITY

An example of the cumulative distribution of spectral power density
is represented in Figure 12. In this example, we can see that around
70% of the overall power lies in the frequency range below 1kHz
in the live-human voice. However, in the loudspeaker case, the
cumulative distribution of spectral power density is almost linearly
increasing, and 70% of the total power lies at the frequency range
of about 4kHz. Thus, we can clearly see that there exist unique
patterns in cumulative distribution of spectral power density to
distinguish live-human voices from voices replayed through built-in
speakers on smartphones.
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Figure 12: Cumulative distribution of spectral power density
over frequencies where the total frequencies in audio signal
are up to 8kHz andW = 10.

B FEATURE VECTORS AND DESCRIPTION
There are different characteristics in signal power distribution be-
tween low-quality speakers (such as built-in speakers in portable
devices) and high-quality standalone speakers. To detect replay
attacks from any kind of speakers, we choose to use signal power
linearity degree features for low-quality speakers (see Table 6) and
higher power frequencies features for high-quality speakers (see
Table 7).

Table 6: Summary of signal power linearity degree features.
The measure of linearity of the power plays an important
role to detect live-human and loudspeaker; since in case of
loudspeaker, the power over frequency range is highly lin-
ear where in live-human case, it is highly skewed.

Signal’s Power Linearity Scores Symbol

Cross-correlation coefficients ρ
Quadratic curve-fitting coefficients q

FVLDF = {ρ,q}

Table 7: Signal’s High Power Frequencies Features Vector.

Signal’s High Power Frequencies Features Symbol

#peaks in high-power frequencies Npeaks
Relative frequencies corresponding to peaks µpeaks
Standard deviation of high power frequency lo-
cation

σpeaks

FVHPF = {Npeaks , µpeaks ,σpeaks }

C DEVICE INFORMATION AND THE LIST OF
VOICE COMMANDS IN THE EXPERIMENT

To validate our system, we used various devices. For attack, we
played recorded voice commands through built-in speakers in 14
different portable devices including 10 smartphones and 4 laptops,
and 4 different high-quality standalone speakers, respectively (see
Table 8). For recording devices, we used 3 different laptops and 2
different smartphones (see Table 9).

Table 8: List devices used for replay attack.

Maker Model

Smartphone

Galaxy A8 A810S
Galaxy A5 SM-A500x
Galaxy Note 8 SM-N950x
Galaxy S8 SM-G950
Galaxy S8 SM-G955N
Galaxy S9 SM-G960N
iPhone SE A1662
iPhone 6S Plus A1524
iPhone 5S A1519
LG V20 V20 F800

Standalone

Bose (Bluetooth) SoundTouch 10
V-MODA (Bluetooth) REMIX-BLACK
Logitech (2.1 Ch.) Z623
Yamaha (5.1 Ch.) YHT-3920UBL
Ultrasonic speakers Valuepro 40TR12B-R

Table 9: List of devices used for recording voice commands.

Maker Model

Samsung Notebook NT910S3T-K81S
Samsung Notebook NT200B5C
Macbook Pro A1706 (EMC 3163)
Galaxy S8 SM-G955N
Galaxy S9 SM-G960N
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